
www.manaraa.com

TheRagnarokSoftware Development EnvironmentHenrik B�rbak ChristensenDepartment of Computer ScienceUniversity of AarhusDK-8000 �Arhus C, Denmarkhbc@daimi.aau.dkAbstract. Ragnarok is an experimental software development environ-ment that focuses on enhanced support for managerial activities in largescale software development, taking the daily work of the software devel-oper as its point of departure. The main emphasis is support in threeareas: Management, navigation, and collaboration. The leitmotif is thesoftware architecture, which is extended to handle managerial data inaddition to source code; this extended software architecture is put undertight version- and con�guration management control and furthermoreused as basis for visualisation. Preliminary results of using the Ragnarokprototype in a number of projects are outlined.1 IntroductionLarge-scale software development requires activities over a wide spectrum: In oneend we �nd programming-near activities like implementation and debugging, inthe other end managerial activities like release control, collaboration, projectmanagement, etc.Ragnarok is a prototype software development environment that experimentswith approaches focused on the managerial end of this spectrum. Often manage-rial aspects of the development process are neglected by developers in a hard-pressed development project: What pays the bills is the delivered system, andnot accurately �lled out time cards, proper software documentation nor a trace-able evolution of the software. Still the accuracy by which these activities areperformed is vital in insuring quality and overview in the development process.The goal of the Ragnarok project is that managerial activities become `part-of'the every day development process instead of the often-felt `stealing-time-from'the process.The scope envisioned for Ragnarok is project teams of 2{6 persons andproject sizes 2{20 man-years.The purpose of this paper is to provide an overview of the Ragnarok en-vironment and therefore the emphasis is more on examples than rigid formaldescriptions. References will be made to more detailed and formal descriptionsof the underlying models.



www.manaraa.com

2 MotivationRagnarok limits its scope to three topics considered essential in successful soft-ware development:{ Project- and source code management: Managing a software project bothmeans managing the project resources and tracing the evolution of producedsoftware. In software production, development time is the critical resourceand a work-break-down (WBD) structure is essential to organise and esti-mate planned and performed tasks. However, software designs evolve and itis therefore often a substantial e�ort to make sure that the WBD keeps pacewith the design. This is a tool gap because di�erent tools and procedures areused for programming in one end (programming environment/editors/etc.)and management (time cards/project management tools/etc.) in the other.Tracing the evolution is essential for two reasons: To provide accurate historicdata for improving future development e�orts; and to ensure the ability torecreate and compare milestones and releases accurately and swiftly.{ Comprehension and navigation: Overviewing and understanding large soft-ware systems and �nding the correct piece of code in the thousands of �lesand libraries, are daunting tasks even in systems with a sound logical design.Explaining the design to newcomers can also be problematic [7].{ Collaboration: Software development is a team e�ort today. It is of vitalimportance that the team has a common understanding of the software andshares a reference frame in which the design can be discussed, documented,and reused. On a smaller scale, it is important that the team can collaborateon actual source code/document development without fearing loss of dataand inconsistencies. Finally, other team members work in parallel and youhave to be aware of their e�orts to adjust your work situation accordingly.The leitmotif in Ragnarok is the software architecture [30] or logical designstructure [45]. By software architecture, we understand the hierarchy of abstrac-tions that de�nes a logical software design. Abstraction and hierarchy are keyconcepts in designing, building, testing, and managing large software systems.We believe it is possible to extend the scope of the architecture to manage-ment, navigation, and collaboration in a project. Many managerial tasks mapwell to the software architecture: For instance a reported bug can be associateddirectly to the class/library that contains it; the same goes for a change logdescribing how it was �xed, a time card listing the time spent on �xing it, etc.With respect to navigation the ability to locate pieces of code using the softwaredesign, instead of remembering long directory paths, is appealing. Collaborationis more naturally performed in terms of the architecture than in terms of looselycoupled sets of �les.The focus on managerial activities does not mean that programming-nearactivities are considered unimportant, but are currently outside the scope of theRagnarok project. Ragnarok delegates programming tasks (edit/compile/etc.)to existing tools.



www.manaraa.com

3 ProposalThe main contributions are the following proposals:{ Annotated software architecture: The proposal is to annotate the abstrac-tions in a software architecture with additional information such as manage-ment data, work-break-down, reported bugs, test suits, release checklists, etc.Thereby the tool gap is minimised because design changes are automaticallyreected in for instance the work-break-down structure.{ Architectural software con�guration management: The proposal is a modelfor software con�guration management (SCM) that minimises the gap be-tween software design and con�guration management by allowing developersto do con�guration- and version control of the abstractions and hierarchy inthe architecture. Furthermore, emphasis is put on traceability and repro-ducibility by unifying the concepts version and bound con�guration.{ Shared, activity mediating, software landscape: Too often `design' only existsin the minds of a few chief designers [7], or the documentation of it tendsto be not `quite' up-to-date. The proposal is to use modern graphical designnotation like OMT or UML [43, 42] to create a visual, shared, design `land-scape' that mediates daily development activities like loading �les into theeditor, compiling, �lling out time cards, logging changes, etc.Finally, the Ragnarok project emphasises an experimental approach: Re-search prototypes have been implemented and are used in real developmentprojects in order to verify the feasibility of the above proposals.4 Annotated Software ArchitectureIn Ragnarok a design abstraction is embodied in a structured object denoted asoftware component. A software component has a name and a unique identity,CID. The physical implementation of an abstraction, a (possibly empty) set ofcode fragments, is stored in an attribute denoted the substance. For instance ina C++ project, a class foo could be represented by a software component foowith substance being the �les ffoo:h; foo:cppg.An abstraction is seldom an isolated entity but must be understood in itsarchitectural context; abstractions are organised hierarchically by composition(aggregation/part-whole) and functionally interrelated by dependencies (associa-tion/use). Such relations are also stored as attributes in the software component;one for composition (a set of part/whole relations) and one for dependencies(a set of dependency relations.) Usually relations between components closelymimic the import/include declarations in the source code.A software component also has a set of annotations. Each annotation is struc-tured data for a speci�c dimension/aspect of the component. Examples include:Managerial annotations (like sta�ng: Who is responsible for implementing thiscomponent; budget: How many sta� hours are budgeted for implementation, howmany have been spent so far; estimated-time-to-complete etc.), quality assurance



www.manaraa.com

Model

Terrain

City

Unit

GUI

Game

AI

GUI components

AI componentsFig. 1. Example of a software architecture. An ellipse represents an abstraction (soft-ware component) and the solid lines between ellipses are composition, dashed lines aredependencies. The `clouds' denote unspeci�ed sets of components.annotations (checklists to be gone through in release situation, regression testsuits), progress logs (what bug-�xes/enhancements have been carried out, bywhom and when), etc.Finally, a software component responds to messages and undergoes trans-formations like `add substance', `remove dependency, `create part component',`modify annotation', etc.4.1 Graph InterpretationThe abstractions and hierarchy in an architecture are de�ned in terms of soft-ware components and their relations. This can be viewed as a directed graph:Components are nodes and relations are arcs. Fig. 1 exempli�es this by showinga feasible architecture for a small strategy game where a human player com-petes against computer controlled opponents for the control of a region of land,comprising various terrain and cities, by means of military units. The model hasthree major components: The underlying game play model, the arti�cial intel-ligence (AI), and the graphical interface (GUI). Our example concentrates onthe model, therefore the model component is shown in more detail: Model isthe class category/library containing classes for the fundamental game concepts:Terrain, City, and Unit. Composition is shown by solid lines while dashed linesindicate functional dependencies: Thus the library Model is composed of classesCity, Unit, and Terrain, while City depends on Unit and Terrain, etc.5 Architectural Software Con�guration ManagementHere we will briey outline the software con�guration management approach,denoted architectural software con�guration management, used in Rag-narok. A more detailed description can be found in [9]. A formal descriptionincluding consistency proofs and algorithms is provided in [11].



www.manaraa.com

(Bug: 980201A, Descr: "Unit production fails", Fixed: Yes),...

Substance:
City version 5

Dependency:

{ ("city.java",1.4) }

{}

{ (Terrain,7), (Unit,9) }

Annotations:

(Budget: 80h, Risk: Low, Staff: hbc,jlk,...), ...

(Task: T06, Time: 3.5h, Log: "Fixed error 980201A"), ...

Composition:

Fig. 2. Possible structure of software component City version 5 showing substance,relation sets, and some �ctitious annotations.
Terrain

Model

Unit

City

11

5

9

7

a) b)

City

Terrain

Model

Unit

11

5

12

6

7

9 10

1

WeaponFig. 3. Component `Model' in version 11 (a) and version 12 (b).5.1 Architectural VersioningConradi and Westfechtel [19] describe a SCM system as a combination of prod-uct space (often denoted `workspace') containing evolving items, and versionspace (often: `repository') storing states of the items evolution. In Ragnarok,the evolving item is the software component and each state is represented by asoftware component version|in essence reifying a version of an abstraction.A software component version is an immutable snapshot in time of the com-ponent: Its substance, relation sets, and annotations. The software componentversions for a given component, CID, are arranged in a traditional version graph[48, 19].An example of a �ctitious internal structure of component City version 5 isshown in Fig. 2. Substance, relations, and example progress log-, bug report-,and budgeting annotations are hinted at.An essential feature of the elements in the relation sets is that they are refer-ences to speci�c software component versions, not generic references. Figure 3 a)exempli�es this by showing component Model in version 11: The version groupfor a component is depicted as a box with rounded corners containing the com-ponent versions (small quadrant with the version number inside) organised in aversion graph. Solid lines going out of a component version represent composi-tion relations, dashed lines dependencies. Thus, for instance City version 5 does



www.manaraa.com

not merely state a dependency to component Unit in general but to a speci�cversion of it|namely version 91.For the architecture to evolve, developers modify copies of component ver-sions in a workspace (modifying substance and/or relations) before committingthese to the version database.Check-in and Check-out The architectural model emphasises bound con�g-urations by means of a transitive closure check-in algorithm. To check in a newversion, the algorithm recursively traverses all relation set references, depth-�rst,and creates new versions of all components along paths to modi�ed components.The check-out trivially reverses this process: The root component versionis checked out, then the check-out is propagated recursively to all componentversions referenced in the relation sets.To illustrate this, consider a situation where an inner class, Weapon, is addedto class Unit. After implementation and testing, a new version of Model is createdin Fig. 3 b). The check-in is propagated to component Weapon, it substancestored and a new version identity, 1, established. Unit and City are also checkedin; the new version of Unit adds a composition relation to Weapon, and City isindirectly modi�ed as it lies on a path from Model to Weapon and must thereforeupdate its dependency to Unit version 10. No new version of Terrain is necessaryas it does not lie on a path to Weapon.Versions are Con�gurations are Versions... As visualised in Fig. 3 com-ponent versions and the relations between them can also be viewed as directedgraphs: Components versions are nodes and the references in the relation setsare arcs. Any component version is root in such a directed graph identifying abound con�guration of the abstraction and its context of relations and relatedabstractions at the time of check-in. Thus, the concepts version and bound con-�guration are uni�ed. Even complex con�gurations are identi�ed by a singlecomponent version, like e.g. `Model version 12' in Fig. 3 b). Thus, con�gurationsare �rst class objects and the evolution of con�gurations is trivially recordedand accessible.Another important consequence of having speci�c references to componentversions in the relation sets is that the software architecture itself is under strictversion control. An architectural di� algorithm can recursively compute di�er-ences in the relation sets between two versions of a component and report ab-stractions added, deleted, or moved, and changed dependencies. This providesbetter overview of architectural changes than the traditional simple list of �lecontents di�erences.5.2 RCM PrototypeThe architectural software con�guration management model is implemented ina subsystem in Ragnarok. This subsystem has been equipped with its own, sim-1 Hence the previous Fig. 1 was actually inaccurate because it showed generic relations.



www.manaraa.com

ple, textual interface in a prototype called `RCM'. RCM is inspired by the UNIXshell: The user can issue commands like check-in and -out, architectural di�'s,display architecture and version history, etc., to the component which is cur-rent, just as commands in a UNIX shell a�ects the current directory. A cd likecommand is available for navigating the component architecture.The current prototype implements component substance as a set of tradi-tional �les and delegates �le-level versioning to RCS [47] so a substance snapshotis a simple set of pairs: (�lename, RCS revision number).A quick reference guide for RCM is provided on WWW [10].5.3 ExperienceRCM is currently used in three, real, small- to medium-sized projects whosemain characteristics are given below.ConSys BETA Compiler RagnarokUsed since Mar. 96 Feb. 97 Feb. 96Data C++, SQL, binary BETA, C, html BETA, LaTeXPlatform NT Unix, NT Unix, NTNo. developers 3 4 1No. components 110 36 36No. �les 1070 250 160No. lines (KLOC) 185 + binary 110 40Table 1. Main characteristics of on-going experiments.The main source of data is guided, open-ended [39] interviews of the devel-opers on the BETA compiler [6] and ConSys [26] projects. A secondary source ofdata is automatically generated usage logs from RCM that have been analysedby simple statistical methods.Results The results can be summarised as follows:Model `feels' natural: The user groups readily accept the software componentto represent design entities and claim a close, if not one-to-one, mapping betweentheir design and their software component structure. They `think' SCM in termsof components rather than �les/directories. This claim is supported by the usagelogs data where �le related commands are seldom used.Emphasis on bound con�gurations: While this is considered important forrelease and milestone management, the developers more emphasised the feelingof `security' in the daily development cycle as backtracking to working con�gu-rations is easy.Traceable architectural evolution: The emphasis on tracing architecturalchange was valued; for instance the ConSys project has more than tripled itssize in terms of number of components and �les during the reported period.Additional details can be found in [12].



www.manaraa.com

5.4 Discussion and Related WorkThe emphasis on bound con�gurations does not prohibit using selection rules tocreate new con�gurations in workspace, but rule based selection plays a muchlesser part. For instance, RCM provides the inevitable `get latest versions' ruleas the only addition to the standard check-out procedure. Instead developersidentify and communicate stabile libraries and subsystems through version iden-ti�cations.The current implementation of the substance attribute as a set of �les makeshandling �ne-grained abstractions (like individual methods in a class) infeasi-ble. A future implementation could overcome this limitation by implementingsubstance as sets of small code fragments in a program database instead.The emphasis on architecture and bound con�gurations is similar to the ideasin COOP/Orm [34, 35, 37] and POEM [33, 32]. The prime di�erence is researchfocus: Where COOP/Orm and POEM have focused on supporting �ne-grainedabstractions but have not been used in real-life projects, the RCM prototype ismore coarse-grained (using traditional �les) but is used `for real' as described insection 5.3. As such, we feel that our work complements and adds credibility toCOOP/Orm and POEM by reporting that architectural models are feasible inpractice.Many traditional SCM systems [15, 41, 16, 8, 36, 5] rely on labels or tags forde�ning bound con�gurations: When creating, say a milestone, all �le versionsde�ning the milestone are tagged with a symbolic name. While tagged �le versionbased systems are easy to understand, they su�er from a number of conceptualproblems: Tagged �le versions do not convey information about the evolution ofthe software architecture itself (e.g. how �les and libraries are added or removed);and conceptually a tag is an is-used-in relation (stating that `this version of this�le is-used-in, say, release 4 of our system')|however developers more naturallythink in terms of uses relations like: Release 4 uses graphics library version 1.14,which uses the window class version 1.22 etc.Bendix' three-dimensional con�guration management [4, chap. 6] also con-tains elements similar to our work. A crucial di�erence is that Bendix' modeluses generic relations. Thus, bound con�gurations must be expressed as a set ofselection rules that in our opinion leads to the tagging technique resulting in thesame problems as mentioned above.6 Software Architecture VisualisationThis section outlines the visualisation part of Ragnarok. A more detailed treat-ment can be found in [14] while an overview and reference guide for the Ragnarokprototype is provided on-line on WWW [13].The fundamental purpose of the visualisation model is to make the architec-ture visually manifest in what is termed the software landscape. The landscapeis shared and mediates development activities: `Shared' because every developerin the team views and manipulates the same landscape, and `mediating' because



www.manaraa.com

Fig. 4. ARagnarok map (1) showing landmarks (2) and decorations (3) for the examplegame model design.daily development tasks are performed by interacting directly with objects rep-resenting abstractions in the landscape.The Ragnarok visual model is based on a geographic space metaphor [29, 20].Objects in a geographic space are characterised by �xed positions over a longtime-scale, like for instance buildings, trees, and streets in a city; as opposed toobjects in a desktop space that are constantly moved around. Humans are aptat navigating in a well known physical environment: As Kuhn and Blumenthalnote: `Perception, manipulation, and motion in space are largely subconsciousactivities that impose little cognitive load while o�ering powerful functionality'[29]. By providing a geographical layout of the software design, we believe thathumans �ne sense of locality can be utilised.6.1 Visual ModelThe landscape is an in�nite two-dimensional plane. The landscape serves as aspace for geographically organising landmarks and decorations as exempli�ed inFig. 4.A landmark occupies a well-de�ned region of the landscape and represents asoftware component (and thereby an abstraction in the software architecture).The hierarchical structure is visualised by spatial containment i.e. the landmarksassociated with components that are part of a component A are positioned insidethe landmark of A. Fig. 4 shows how the core game model landmarks are nestedinside the `Model' landmark.A decoration is simple graphics, like text, lines, polygons, images, etc., po-sitioned in the landscape. Speci�cally the Ragnarok prototype provides basic



www.manaraa.com

support for UML notation, the uni�ed modelling language [42]. Thereby thesoftware design can be further documented by stating associations, multiplicity,roles, etc., as seen on Fig. 4.The landscape is not directly accessible but viewed and manipulated throughmaps. A map visualises a region of the landscape on the computer display. Theregion displayed is determined by the map's view-parameters: (O;w; h; s; A). Ois the position of the map's top left pixel projected onto the landscape, w andh the map's physical (pixel) width and height, s the map's scale, and A themap's aspect. Hence a map w pixels wide and h pixels tall will display region(O:x;O:y;O:x + ws;O:y + hs) of the landscape. This is denoted the displayedregion.The aspect A determines the appearance of landmarks in the displayed re-gion by processing a subset of the data in the associated software component.For example in a management aspect map the management annotation dataof a component may be processed to yield a colour code for estimated-time-to-complete, which is then used as the background colour for the landmark.Global context Any number of maps can be created showing regions of thelandscape in various aspects. However, many maps do not provide overview norglobal context: How are the displayed regions positioned relative to each other?Therefore, a map outline is introduced. A map outline is a projection of thedisplayed region of one map (detail map) onto another map dedicated for showingglobal context (world map). To distinguish outlines in the world map, a givenoutline and the frame of the corresponding detail map have identical colours.The outline and the displayed region in the corresponding map are synchronisedso any change in either of them is immediately reected in the other.Interaction The interaction model employed is direct manipulation [44, 24].Maps, landmarks, and outlines can be moved, resized, and zoomed using simplemouse manipulations. Landmarks also mediate actions from the user to theirassociated components: For instance to compile a component, the user clicks thelandmark bringing up a menu where she can select the compile action directly.The set of actions available on any given component depends on the aspect of themap it is shown in; e.g. in a version control map landmarks mediate actions likecheck-in and check-out to the underlying components, in a management aspectmap the user can edit task lists, log spent sta� hours, etc.6.2 Ragnarok PrototypeFigure 5 shows a snapshot of the Ragnarok prototype. The example project isthe Ragnarok project itself whose main characteristics were outlined in table 1.The Ragnarok window is divided into four parts: In the upper left corner isthe world map (1) with outlines (9) of open detail maps. The world map hasa �xed position in the Ragnarok window for easy reference and overview. Thelower left part contains the log window (2), which is essentially a running log of



www.manaraa.com

Fig. 5. Overview over the Ragnarok prototype window. The numbered partsare explained in the text. Note: The image in this and the following �guresare best viewed in colour. Colour versions of the images can be found athttp://www.daimi.aau.dk/�hbc/papers/nwper-images.html.important operations, here a version control check-out operation. The bottomright corner contains the status bar (3), which displays warnings and statusinformation. On the right is a large area (4) in which may reside multiple detailmaps (5{7). Landmarks are generally displayed as simple, coloured, rectanglescontaining component name and possible additional information. Clicking anylandmark brings up a context-sensitive menu (8) that lists available actions onthe underlying component.Version control An important collaboration aspect in version- and con�gura-tion management is to enable the individual developer to overview how his/herprivate copy of source code relates to the overall project code. A typical questionis: `Do I have the newest version of library X?'The version control aspect visualises this in a compact form. Colour codingof landmarks is used to show the state of the developers local copy. Referring toFig. 6 light red (medium gray on the �gure) indicates components where newerversions exist. Gray (hatched) indicates that the local source code matches thenewest. The colours light green (dotted) and bright red (dark gray) are used to



www.manaraa.com

Fig. 6. A map showing the version control aspect.convey information about currently ongoing work: Light green indicates that thedeveloper himself is currently editing information in the component, bright redthat some other, named, developer is working on it, and thus warns about poten-tial conicts if the developer decides to edit this component as well. Light yellow(light gray) indicates indirect changes because components depended upon havechanged.The context sensitive menu, half-visible, allows version control commands,check-in and -out, display version graph, source code access, etc., to be issuedto the individual components.Progress is instantly reected in all running Ragnarok instances and thusthe evolution of the software system is visible on-line: For instance if developer`johan' checks in component `VersionedFile' in Fig. 6 the component will imme-diately turn light red to indicate that a new version is available.Topography This aspect minimises the amount of information presented toprovide a compact overview, refer to the world map (1) in Fig. 5. Decorationsare not shown, and landmarks are grayed according to their nesting levels andwithout text. The context-sensitive menu lists (source) �les in the componentand choosing one loads the �le into an editor.This aspect is the standard one for the world map providing convenientoverview of the project landscape and a neutral background for outlines. Anunanticipated but strong feature of the topography aspect world map is that inessence it is a compact and fast �le browser: Any of the 160 source �les in theRagnarok project can be loaded into our emacs editor using one mouse-click inthe world map (clicking the landmark brings up a pop-up menu with �le names,releasing the mouse button over the wanted �le tells emacs to load it.)



www.manaraa.com

Fig. 7. A map in visual scripting aspect, showing the result of a grep for the string`GetLockOwner'.Visual script This aspect allows users to run scripts, written in the interpretedlanguage TCL [38] on (parts of) the project and interpret the result spatiallyand visually. User actions like mouse clicks on landmarks or positions also resultin user de�ned TCL functions being called.As an illustration Fig. 7 shows the output of a grep script written in TCL.The user has supplied the search string `GetLockOwner' as argument, and theTCL script is then executed on all �les in all components in the selected con-�guration (here the same part as in Fig. 6.) The result is then visualised: Theinterior of landmarks is �lled with black bars, each one represents a single �le inthe component. The bar height is a relative measure of the �le size measured inlines. Each red line (white on the �gure) in a bar shows that the search stringoccurs in the �le at this relative position.Furthermore, additional TCL scripts are bound to mouse events: Clickingand holding down the left mouse button near a red line pops up a text viewerdisplaying 20 lines around the position where the search string occurs in the �le|releasing the mouse button again makes the text viewer disappear. This wayone can quickly browse the occurrences and their immediate context withoutpolluting the screen with numerous new windows. Double clicking a red lineautomatically loads the �le into the editor centred on the matching line.This visualisation of a recursive grep is compact and provides better overviewthan traditional textual recursive grep's. Furthermore the clustering, density,and distribution of red lines in itself give important information. For instancegrepping for a function or class name may show misuses (`Now, why is there acall in the GUI library?') or high coupling (`Hey, look, this class pops up in everycomponent in the system!') that are easily missed in a 300 line textual output.



www.manaraa.com

By basing this aspects on user written scripts, Ragnarok provides a degreeof tailorability to the context of a given project as developers can write scriptsthat provide custom visualisations. The TCL language has strong support for�le handling and invoking external programs and it is therefore relatively simpleto parse �les (as done in the grep case above), or invoke pro�lers, run regressiontests, extract relevant data from a project database, etc., and visualise the re-sults of such external processing. The ability to bind user written TCL scripts tomouse events makes custom visualisations direct manipulable: Clicking a land-mark that highlights an unsuccessful regression test run can load the test intoan editor; clicking a landmark with project data can instruct the database toload the proper table/view, etc.6.3 DiscussionHaving a shared, mediating, design landscape has a number of bene�ts:{ Overview and navigation: Intangible `design' is rei�ed into concrete, manip-ulable, objects and overview and navigation is supported by tapping intohumans �ne spatial and visual perception. Focus shifts from traditionalname-based search (remembering a sequence of directory names to �nd a�le) to location-based search: Developers instead learn where the componentcontaining relevant information is located.{ Mediating, up-to-date, software design: The software landscape becomes thefocal point of daily activities: Editing a �le in a component, compiling alibrary, editing a task list, reporting a bug, checking in a change, etc., are allperformed directly through context-sensitive menus of the landmarks. Thisis direct and intuitive and the pressure to ensure a correct, up-to-date, designlandscape is strengthened.{ Collaboration: A shared landscape provides a common reference frame fordevelopers, managers, testers, and maintainers alike, easing discussion andallows everyday navigation language like `look to the left' to be used whenhelping in locating components. The landscape is shared meaning progressand changes are immediately reected in every team member's view of thelandscape.{ Visualisation framework: Data in a software project is inherently multi-dimensional and traditionally these di�erent dimensions are handled by dif-ferent tools and organisational procedures and presented in many di�erentformats. The software landscape provides a stable, unifying visualisationframework that allows diverse information to be visualised overlaid over thedesign landscape.The di�erent aspects described in section 6.2 of course only serve as a sampleof uses. An important aspect currently not implemented is a management aspect.It is envisioned that developers log development progress and report actual workhours spent directly on the components. Thereby a management aspect map canon-line report estimated-time-to-complete or actual versus budgeted resource



www.manaraa.com

allocations for instance using a colour coding scheme for the landmarks, andthereby highlight trouble spots.Many other aspects can be envisioned: Defect reporting, possibly determinedby automatically running regression test suits on modi�ed components; visual-ising pro�ling information to identify bottlenecks in a system; release control,highlighting components with un-passed tests, etc.6.4 Related WorkPad++: Pad++ [3, 2, 40] is an innovative and powerful 2D visualisation systemin which a user manipulate objects on an in�nitely zoomable 2D surface andincorporates a very e�ective engine for panning and zooming. The underlyingvisual model employed in Ragnarok is similar to Pad++. The di�erence is theobjects handled. In Pad++, objects reside directly on the Pad surface; in contrastlandmarks serve as visual representations of the complex, multi-dimensional,data of the underlying component; they are not the actual data. Therefore,Ragnarok uses the same region to visualise di�erent data in di�erent aspect maps(like grep matches or version information). This aspect property of Ragnarok isessential because of the multi-dimensional nature of software.CASE tools: Looking at e.g. map (5) in Fig. 5 Ragnarok may resemble atraditional CASE tool or UML diagram editor. However, the focus of CASE toolsand Ragnarok is di�erent. CASE tools are generally analysis and design toolswith code generation features i.e. with strong support and focus on the earlyphases of a project and the programming task. The emphasis in Ragnarok isforemost on making design abstractions manifest and manipulable by assigning ageographic location and secondly on documenting the design using some notationlike UML; once this is done it is used as a visualisation framework for projectdata which CASE-tools traditionally do not address.7 SummaryWe believe that the combination of annotated software architecture, an archi-tectural SCM model, and the geographic space visual model provides supportfor the problems outlined in section 2:{ Project- and source code management: The ability to annotate the softwarearchitecture addresses the tool gap: We believe many tasks like documen-tation, handling time cards, bug reporting, and managing the work-break-down structure can be integrated into the architecture which strengthensthese tasks as being `part-of'- instead of `stealing-time-from' software pro-duction. Having a shared annotated architecture means that progress can bemonitored in real time which is bene�cial to both managers and developers.The underlying architectural con�guration management model ensures tightversion- and con�guration control of the software architecture. The fact thatannotations are version controlled as well means that very accurate historicdata about the process can be extracted and analysed.



www.manaraa.com

{ Comprehension and navigation: The shared software landscape providesoverview and documents the software design in the daily development envi-ronment. Therefore we believe the pressure is strengthened to ensure up-to-date diagrams. Location-based navigation is a strong alternative/supplementto traditional name-based search. Many di�erent aspects of the softwarestructure can be visualised overlaid on the same, stable, landscape easingcomparisons; and navigational knowledge obtained performing one task canbe carried on to the next.{ Collaboration: The software design landscape provides a common referenceframe within the team and across di�erent areas of expertise. The landscapeimmediately reects changes to the underlying software architecture, like e.g.new versions, added/deleted abstractions etc, and thus provides overviewover development progress. The underlying software con�guration manage-ment model allows sharing and collaboration on source code and eliminatesdata loss and inconsistencies.Kruchten advocates multiple views on architecture in the 4 + 1 view model[28] including the logical, process, physical, and development view. Ragnarok isclearly based on the logical view and regards the development view as attributesof the logical, through the substance attribute of software components. One of thereasons that Kruchten needs a separate development view is indeed release- andcon�guration management concerns, a problem we believe our model overcomes.Still, aspects like process- and physical view as well as for instance the planningphase where one needs to view tasks on a time scale, are not supported andcannot be handled nor visualised well. However, we believe there are enoughinteresting and important aspects to make the approach worthwhile.Navigation using the presented visual model relies on a stable landscape thatis well known to the developers: If the landscape is constantly modi�ed, spatialknowledge is virtually non existing|compare the e�ort of driving home fromthe o�ce every day with the e�ort of driving in an unknown city. Consequently,navigation will become easier as the design stabilises. During the initial analysisand design phases, ideas and abstractions are fostered and discarded rapidlymeaning many changes in the landscape; in these phases, a more traditional,search-based, navigation mechanism is a bene�cial supplement.8 Status and Future WorkThe status of the Ragnarok project is:{ The architectural software con�guration management model has proven towork well in the RCM prototype tool as described in section 5.3 and detailedin [12].{ The visual model, implemented in the graphical Ragnarok prototype, is cur-rently used in the Ragnarok project itself and in a small sub-project inthe Mj�lner BETA system [1]. Preliminary experience is encouraging, espe-cially concerning location-based navigation as described in section 6.2. It is



www.manaraa.com

planned that the ConSys and BETA compiler groups will shift from RCMto the visual Ragnarok prototype during 1998.{ The annotation support is currently rather limited and therefore no signi�-cant experience can be reported yet.Future work proceeds in a number of directions. A prime concern is to mergethe current e�orts in rather di�erent areas, software con�guration management(section 5) and visualisation (section 6), into a more cohesive whole. This willentail problems like how to visualise version graphs and compare (`di�') con�g-urations using the geographic visualisation model, and how to version controlthe landscape itself. It is also important to verify the feasibility of an annotatedsoftware architecture: The user groups report a need for supporting progresstracking and bug report handling which are good candidates for initial support.This in turn requires more operational aspects to be implemented for visualisingsuch information.A lot of work also remains within the individual areas: The architecturalsoftware con�guration model needs improved support for collaboration whichwe plan to do using `cooperative versions' [22] i.e. `micro'-versions intended forpersonal, daily, development activities. Concerning the visualisation model, amajor e�ort is to design a exible, user de�nable, aspect model that allows tai-loring map aspects and visualisations to the need of the individual organisationand developer.References1. P. Andersen, L. Bak, S. Brandt, J. L. Knudsen, O. L. Madsen, K. J. M�ller,C. N�rgaard, and E. Sandvad. The Mj�lner BETA System. In Object-OrientedEnvironments - The Mj�lner Approach [27], pages 24{35.2. B. B. Bederson and J. D. Hollan. Pad++: A Zooming Graphical Interface forExploring Alternate Interface Physics. In Proceedings of ACM UIST '94. ACMPress, 1994.3. B. B. Bederson, J. D. Hollan, K. Perlin, J. Meyer, D. Bacon, and G. Fur-nas. Pad++: A Zoomable Graphical Sketchpad for Exploring Alternate InterfacePhysics. Journal of Visual Languages and Computing, 7:3{31, 1996.4. L. Bendix. Con�guration Management and Version Control Revisited. PhD thesis,Institute of Electronic Systems, Aalborg University, Denmark, Dec. 1995.5. B. Berliner. CVS II: Parallelizing Software Development. In USENIX, WashingtonD.C., 1990.6. http://www.daimi.aau.dk/�beta/.7. U. B�urkle, G. Gryczan, and H. Z�ullighoven. Object-Oriented System Develop-ment in a Banking Project: Methodology, Experience, and Conclusions. Human-Computer Interaction, 10:293{336, 1995.8. PLATINUM CCC/Harvest Users Guide.9. H. B. Christensen. Context-Preserving Software Con�guration Management. InConradi [18], pages 14{24.10. H. B. Christensen. RCM 2.5 Quick Reference. De-partment of Computer Science, University of Aarhus, 1997.http://www.daimi.aau.dk/�hbc/Ragnarok/rcm quickref.html.



www.manaraa.com

11. H. B. Christensen. A Formal Model for the Architectural Software Con�gurationManagement Model. Technical report, Department of Computer Science, Univer-sity of Aarhus, 1998. To appear in DAIMI PB series.12. H. B. Christensen. Experiences with Architectural Software Con�guration Manage-ment in Ragnarok. In Proceedings of SCM-8: International Symposium on SystemCon�guration Management, Lecture Notes in Computer Science, Brussels, July1998. Springer Verlag.13. H. B. Christensen. Ragnarok: Overview and Reference Guide Version1.5. Department of Computer Science, University of Aarhus, 1998.http://www.daimi.aau.dk/�hbc/Ragnarok/ragn doc.html.14. H. B. Christensen. Utilising a Geographic Space Metaphor in a Software Devel-opment Environment. In Proceedings of EHCI'98, IFIP Working Conference onEngineering for Human-Computer Interaction, Crete, Greece, Sept. 1998. Chap-man and Hall.15. http://www.rational.com/products/clearcase/.16. Pc-based version control. http://www.silcom.com/�alobba/pc vc.html.17. R. Conradi, editor. Software Con�guration Management, Lecture Notes in Com-puter Science 1235. ICSE'97 SCM-7 Workshop, Springer Verlag, 1997.18. R. Conradi, editor. Supplementary Proceedings: 7th International Workshop,SCM7, May 1997.19. R. Conradi and B. Westfechtel. Towards a Uniform Version Model for SoftwareCon�guration Management. In Conradi [17].20. M. J. Egenhofer and D. M. Mark. Naive Geography. In Frank and Kuhn [23],pages 1{15.21. J. Estublier, editor. Software Con�guration Management, Lecture Notes in Com-puter Science 1005. ICSE SCM-4 and SCM-5 Workshops, Springer Verlag, 1995.22. J. Estublier and R. Casallas. Three Dimensional Versioning. In Estublier [21],pages 118{135.23. A. U. Frank and W. Kuhn, editors. Spatial Information Theory / A TheoreticalBasis for GIS. COSIT '95, Lecture Notes in Computer Science 988, Springer-Verlag, 1995.24. E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct manipulation interfaces. InD. A. Norman and S. W. Draper, editors, User Centered System Design, chapter 5.Lawrence Erlbaum, 1986.25. IEEE Computer Society Press. Proceedings of the 18th International Conferenceon Software Engineering, 1996.26. ISA. Consys. http://isals.d�.aau.dk, 1996. ISA: Institute for Storage Ring Facili-ties, University of Aarhus.27. J. L. Knudsen, M. L�ofgren, O. L. Madsen, and B. Magnusson. Object-OrientedEnvironments - The Mj�lner Approach. Prentice-Hall, 1993.28. P. B. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):42{50,Nov. 1995.29. W. Kuhn and B. Blumenthal. Spatialization: Spatial Metaphors for User Interfaces.Geoinfo-Series, Department of Geoinformation, Technical University, Vienna, 1996.Reprinted tutorial notes from CHI'96.30. D. A. Lamb. Introduction: Studies of Software Design. In Studies of SoftwareDesign [31].31. D. A. Lamb, editor. Studies of Software Design, Lecture Notes in Computer Science1078. ICSE'93 Workshop, Springer Verlag, 1996.32. Y.-J. Lin and S. P. Reiss. Con�guration Management in Terms of Modules. InEstublier [21].



www.manaraa.com

33. Y.-J. Lin and S. P. Reiss. Con�guration Management with Logical Structures.In Proceedings of the 18th International Conference on Software Engineering [25],pages 298{307.34. B. Magnusson and U. Asklund. Fine Grained Version Control of Con�gurations inCOOP/Orm. In Sommerville [46], pages 31{48.35. B. Magnusson, U. Asklund, and S. Min�or. Fine Grained Revision Control forCollaborative Software Development. In ACM SIGSOFT'93 - Symposium on theFoundations of Software Engineering, Los Angeles, California, Dec. 1993.36. Microsoft (R) Corporation: Visual SourceSafe. http://www.microsoft.com/ssafe/.37. S. Min�or and B. Magnusson. A model for Semi-(a)Synchronous CollaborativeEditing. In Proceedings of Third European Conference on Computer-SupportedCooperative Work - ECSCW'93, Milano, Italy, 1993. Kluwer Academic Press.38. J. K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley Professional ComputingSeries, 1994.39. M. Q. Patton. Qualitative Evaluation Methods. Sage Publications, Beverly Hills,Calif., 1980.40. K. Perlin and D. Fox. Pad - An Alternative Approach to the Computer Interface.In Proceedings of ACM SIGGRAPH '93. ACM Press, 1993.41. http://www.intersolv.com/products/pvcs-vm.htm.42. Uni�ed Modeling Language, version 1.0. Rational Software Corporation, SantaClara/CA, Jan. 1997. URL:http://www.rational.com.43. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and Design. Prentice-Hall International Editions, 1991.44. B. Shneiderman. Direct Manipulation: A Step Beyond Programming Languages.IEEE Computer, Aug. 1983.45. I. Sommerville. Software Engineering. Addison-Wesley Publishers Ltd., 4 edition,1992.46. I. Sommerville, editor. Software Con�guration Management, Lecture Notes inComputer Science 1167. ICSE'96 SCM-6 Workshop, Springer Verlag, 1996.47. W. F. Tichy. RCS { A System for Version Control. Software { Practice & Experi-ence, 15(7):637{654, July 1985.48. W. F. Tichy. Tools for Software Con�guration Management. In Winkler [49].49. J. F. H. Winkler, editor. Proceedings of the International Workshop on SoftwareVersion and Con�guration Control. B. G. Teubner, Stuttgart, Jan. 1988.


